
Other Topics in PythonOther Topics in Python
by

Kaustubh VaghmareKaustubh Vaghmare
(IUCAA, Pune)

E-mail: kaustubh[at]iucaa[dot]ernet[dot][in]

http://localhost:8001/OtherTopics.slides.html?print-pdf

1 of 36 Monday 28 July 2014 03:05 PM

Installing Packages / ModulesInstalling Packages / Modules
There are two ways of installing third party modules.

Downloading source and installing as per instructions.
Using "pip", a package manager for Python.

NOTE: Windows and Mac OS X users are on your own. I've no idea how to handle these
two platforms.

For a complete list of registered Python packages : https://pypi.python.org/pypi

http://localhost:8001/OtherTopics.slides.html?print-pdf

2 of 36 Monday 28 July 2014 03:05 PM

A Typical Package Installation from SourceA Typical Package Installation from Source
Download source.
Unzip it.
There is generally a setup.py. All you need to do is,

python setup.py install

You may or may not have to change the PYTHONPATH.

http://localhost:8001/OtherTopics.slides.html?print-pdf

3 of 36 Monday 28 July 2014 03:05 PM

Using "pip"Using "pip"
"pip" is a program for installing any program registered in the Python package index.
First you need to install the program. For Debian based Linux distros,

If successful, you can do the following,

Example:

sudo apt-get install python-pip

pip install [packagename]

pip install matplotlib

http://localhost:8001/OtherTopics.slides.html?print-pdf

4 of 36 Monday 28 July 2014 03:05 PM

List ComprehensionsList Comprehensions
These are special ways of creating new lists in a compact syntax.

In [25]:

Now, consider the following equivalent syntax.

In [26]:

squares = []
for i in range(10):
 squares.append(i**2)
print squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

squares_alt = [i**2 for i in range(10)]
print squares_alt

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

http://localhost:8001/OtherTopics.slides.html?print-pdf

5 of 36 Monday 28 July 2014 03:05 PM

With an if-conditionWith an if-condition
In [27]:

We can use this for filtering existing lists.

In [28]:

squares_even = [i**2 for i in range(10) if i%2 == 0]
print squares_even

[0, 4, 16, 36, 64]

a = ["Hello", "Glenn", "Man", "Lady", "Howard", "Leonard"]
a_len5 = [i for i in a if len(i) == 5]
print a_len5

['Hello', 'Glenn']

http://localhost:8001/OtherTopics.slides.html?print-pdf

6 of 36 Monday 28 July 2014 03:05 PM

Nested List Comprehensions!Nested List Comprehensions!
In [29]:

The equivalent syntax in traditional loops would be -

In [30]:

k = [(i,j) for i in range(3) for j in range(3)]
print k

[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1)

, (2, 2)]

k = []
for i in range(3):
 for j in range(3):
 k.append((i,j))
print k

[(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1)

, (2, 2)]

http://localhost:8001/OtherTopics.slides.html?print-pdf

7 of 36 Monday 28 July 2014 03:05 PM

List Comprehensions - Dos and DontsList Comprehensions - Dos and Donts

For simple for-loops like we saw earlier, you SHOULD use list comprehensions.
In fact, list comprehensions run faster than traditional loops.

But,

List comprehensions, especially nested ones, can obfuscate code.
In such a case, it's better to use elaborate loops.

http://localhost:8001/OtherTopics.slides.html?print-pdf

8 of 36 Monday 28 July 2014 03:05 PM

Examples of List Comprehensions at WorkExamples of List Comprehensions at Work
Consider we wanted to read a list of words from a file, where each word is on one line.
You might want to say,

In [31]:

Notice the "" at the end of each string in the list. We would like to "not have them".

In [32]:

f = open("words.txt")
words = f.readlines()
print words

['First\n', 'Second\n', 'Third\n', 'Fourth\n', 'Fifth\n']

words = [i.rstrip() for i in open("words.txt").readlines()]
print words

['First', 'Second', 'Third', 'Fourth', 'Fifth']

http://localhost:8001/OtherTopics.slides.html?print-pdf

9 of 36 Monday 28 July 2014 03:05 PM

Consider replacing all NaN values with zeros in a list.

In [33]:

In [34]:

data = [1, 2, 3, 4, "NaN", 7, 4, "NaN"]
data_new = [i if i!="NaN" else 0 for i in data]

print data_new

[1, 2, 3, 4, 0, 7, 4, 0]

http://localhost:8001/OtherTopics.slides.html?print-pdf

10 of 36 Monday 28 July 2014 03:05 PM

Functions - Arguments - Keyword ArgumentsFunctions - Arguments - Keyword Arguments
In [35]:

This way, it is possible to make functions which accept arbitrary number of arguments
but with names.

NOTE: Unlike *args, where one gets a list of elements, **kwargs, one gets a dictionary of
arguments.

def f(**kwargs):
 print kwargs

f(a=3, b=5, c=7)

{'a': 3, 'c': 7, 'b': 5}

http://localhost:8001/OtherTopics.slides.html?print-pdf

11 of 36 Monday 28 July 2014 03:05 PM

ScopesScopes
Let us spend some time understanding variable scopes.

In [36]:

In [37]:

In [38]:

x = 3
def f():
 print x

f() # calling the function.

3

x = 3
def f():
 x = 2
 print x # This is the local x
print x # This is the global x

3

http://localhost:8001/OtherTopics.slides.html?print-pdf

12 of 36 Monday 28 July 2014 03:05 PM

In [39]: f()

2

http://localhost:8001/OtherTopics.slides.html?print-pdf

13 of 36 Monday 28 July 2014 03:05 PM

Let us see a more complicated example.

In [40]:

In [41]:

x = 3
def f():
 x = 4
 def g():
 x = 5
 print x # this uses 'x' within the block.
 print x # the local "x"
 g()
print x # Global 'x'

3

f()

4

5

http://localhost:8001/OtherTopics.slides.html?print-pdf

14 of 36 Monday 28 July 2014 03:05 PM

The "global" statement.The "global" statement.
In [42]:

In [43]:

In [44]:

x = 44
def f():
 global x
 x = 33
 print x
print x

44

f()

33

print x

33

http://localhost:8001/OtherTopics.slides.html?print-pdf

15 of 36 Monday 28 July 2014 03:05 PM

Choose names wisely!Choose names wisely!
In [45]:

In [46]:

L E G B : Local, Enclosing, Global, Built-in

Therefore, if you define a new variable with same name as built-in, it will override it
because of the above order of looking up variables.

a = "Some String"
print type(a)

Some String

None

def type(x):
 print x
type(a)

Some String

http://localhost:8001/OtherTopics.slides.html?print-pdf

16 of 36 Monday 28 July 2014 03:05 PM

Crazy Crazy WorldCrazy Crazy World
Here is some crazy behavior.

In [47]: x = 3
def f():
 print x # you expect this to be global.
 x = 4 # and now this x to be local.

http://localhost:8001/OtherTopics.slides.html?print-pdf

17 of 36 Monday 28 July 2014 03:05 PM

In [48]: f()

UnboundLocalError Traceback (most recen

t call last)

<ipython-input-48-0ec059b9bfe1> in <module>()

----> 1 f()

<ipython-input-47-865880ab4ad6> in f()

 1 x = 3

 2 def f():

----> 3 print x # you expect this to be global.

 4 x = 4 # and now this x to be local.

 5

UnboundLocalError: local variable 'x' referenced before assignm

ent

http://localhost:8001/OtherTopics.slides.html?print-pdf

18 of 36 Monday 28 July 2014 03:05 PM

Some Useful Built-in FunctionsSome Useful Built-in Functions
Map it!

In [49]:

So, map() applies a function to a list element-wise and returns the resulting list.

def increment(x):
 return x+1

a = [1,2,3,4]
b = map(increment, a)
print b

[2, 3, 4, 5]

http://localhost:8001/OtherTopics.slides.html?print-pdf

19 of 36 Monday 28 July 2014 03:05 PM

Zip it up.Zip it up.
In [50]:

In [51]:

a = [1,2,3]
b = [4,5,6]
c = zip(a,b)
print c

[(1, 4), (2, 5), (3, 6)]

x = [1,2,3]
y = [4,5,6,7] # inequal length of x and y
z = zip(x,y)
print z

[(1, 4), (2, 5), (3, 6)]

http://localhost:8001/OtherTopics.slides.html?print-pdf

20 of 36 Monday 28 July 2014 03:05 PM

Filter it!Filter it!
In [52]: def gt(x):

 if x > 0:
 return True

a = range(-5,5)
a_new = filter(gt, a)
print a_new

[1, 2, 3, 4]

http://localhost:8001/OtherTopics.slides.html?print-pdf

21 of 36 Monday 28 July 2014 03:05 PM

Philosophy of PythonPhilosophy of Python
http://localhost:8001/OtherTopics.slides.html?print-pdf

22 of 36 Monday 28 July 2014 03:05 PM

In [53]: import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to

do it.

Although that way may not be obvious at first unless you're Dut

ch.

Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea

.

Namespaces are one honking great idea -- let's do more of those

!

http://localhost:8001/OtherTopics.slides.html?print-pdf

23 of 36 Monday 28 July 2014 03:05 PM

http://localhost:8001/OtherTopics.slides.html?print-pdf

24 of 36 Monday 28 July 2014 03:05 PM

The PEP-8 Style GuideThe PEP-8 Style Guide
Can be accessed at:

http://legacy.python.org/dev/peps/pep-0008/

It gives out various conventions to follow such as how to name your variables, how to
import modules and so on...

If you especially intend to share your code in open source projects, it will be better for
you to follow as many guidelines as possible from this document. It helps make your
programs "look good"!

http://localhost:8001/OtherTopics.slides.html?print-pdf

25 of 36 Monday 28 July 2014 03:05 PM

Is it a Module? Program? Or BothIs it a Module? Program? Or Both
Consider the following situation. You have a program...

... the program should behave differently when used as a module ...

... and differently when executed directly ... possible?

YES!YES!
Let's see how!

http://localhost:8001/OtherTopics.slides.html?print-pdf

26 of 36 Monday 28 July 2014 03:05 PM

Let us revisit our module.Let us revisit our module.
"""
This is a custom module.
Containing some functions for the purpose of demonstration.
"""
def fun1():
 print "Inside fun1"

def fun2():
 print "Inside fun2"

pi = 3.14
e = 2.7

print "I am a Custom Module"

http://localhost:8001/OtherTopics.slides.html?print-pdf

27 of 36 Monday 28 July 2014 03:05 PM

Let us run our program directly.

In [54]:

And let us import it!

In [55]:

No difference! It does not make sense for import Example to generate output, so let's
see how we can fix that.

%run Example.py

I am a Custom Module

import Example

I am a Custom Module

http://localhost:8001/OtherTopics.slides.html?print-pdf

28 of 36 Monday 28 July 2014 03:05 PM

Now, import Example will not print I am a Custom Module. But, directly executing the
script will!

"""
This is a custom module.
Containing some functions for the purpose of demonstration.
"""
def fun1():
 print "Inside fun1"

def fun2():
 print "Inside fun2"

pi = 3.14
e = 2.7

if __name__ == "__main__": # Following will run only if program is execute
d directly!
 print "I am a Custom Module"

http://localhost:8001/OtherTopics.slides.html?print-pdf

29 of 36 Monday 28 July 2014 03:05 PM

Hash Bang!Hash Bang!
It is possible to make Python scripts behave like shell scripts on the Linux platform. The
first line of the program should contain the following:

You can then name your file as DoThis. Then make the file executable.

And to execute, you can directly say,

#! /usr/bin/python

$ chmod u+x DoThis

http://localhost:8001/OtherTopics.slides.html?print-pdf

30 of 36 Monday 28 July 2014 03:05 PM

The "in" keyword:The "in" keyword:
Useful to check the memberships in collections.

In [1]:

In [2]:

In [3]:

In [4]:

a = [1,2,3,4,5]
2 in a

Out[1]: True

"H" in "Hello"

Out[2]: True

1 in {"a": 1, "b":2 }

Out[3]: False

"a" in {"a": 1, "b":2 }

Out[4]: True

http://localhost:8001/OtherTopics.slides.html?print-pdf

31 of 36 Monday 28 July 2014 03:05 PM

SetsSets
A set can be initialized like this.

In [5]:

In [6]:

In [7]:

In [8]:

a = {1,2,3,4,5,5,5}; b = {4,6,7,7,8,9}
print a, b

set([1, 2, 3, 4, 5]) set([8, 9, 4, 6, 7])

a.intersection(b)

Out[6]: {4}

a - b

Out[7]: {1, 2, 3, 5}

b - a

Out[8]: {6, 7, 8, 9}

http://localhost:8001/OtherTopics.slides.html?print-pdf

32 of 36 Monday 28 July 2014 03:05 PM

In [9]:

Here is a cool technique for removing repetitions in a list.

In [11]:

In [13]:

A Numpy equivalent would be np.unique()

a.union(b)

Out[9]: {1, 2, 3, 4, 5, 6, 7, 8, 9}

l = [1,2,3,4,5,6,6,7,8,8,8,8]
print l

[1, 2, 3, 4, 5, 6, 6, 7, 8, 8, 8, 8]

l = list(set(l))
print l

[1, 2, 3, 4, 5, 6, 7, 8]

http://localhost:8001/OtherTopics.slides.html?print-pdf

33 of 36 Monday 28 July 2014 03:05 PM

Complex NumbersComplex Numbers
In [14]:

In [15]:

In [16]:

In [17]:

a = 1+2j

type(a)

Out[15]: complex

a**2

Out[16]: (-3+4j)

a.conjugate()

Out[17]: (1-2j)

http://localhost:8001/OtherTopics.slides.html?print-pdf

34 of 36 Monday 28 July 2014 03:05 PM

FractionsFractions
In [22]:

In [25]:

In [27]:

import fractions
x = fractions.Fraction(2,3)
y = fractions.Fraction(2,5)
print x+y

16/15

print x*y

4/15

fractions.gcd(45,54)

Out[27]: 9

http://localhost:8001/OtherTopics.slides.html?print-pdf

35 of 36 Monday 28 July 2014 03:05 PM

The Take Home MessageThe Take Home Message
Python's standard libraries have an amazing collection of functions for doing all sorts of
things.

You can find all the modules and their documentation at : https://docs.python.org
/2/library/index.html

As you have seen, creating a library is so easy in Python that - even if there is something
Python does not do, you can make a module to support such a functionality. Who knows
- if you do a good job, Python Software Foundation might even make it a part of the
standard library.

http://localhost:8001/OtherTopics.slides.html?print-pdf

36 of 36 Monday 28 July 2014 03:05 PM

