
Basics of Python - 2Basics of Python - 2
by Kaustubh Vaghmareby Kaustubh Vaghmare
(IUCAA, Pune)

E-mail: kaustubh[at]iucaa[dot]ernet[dot]in

http://localhost:8001/CorePython2.slides.html?print-pdf

1 of 54 Sunday 16 February 2014 05:30 PM

Our First Program - Rewritten!Our First Program - Rewritten!
Let us introduce the following modifications to the program.

We use floats instead of ints.
We accept the numbers from the user instead of "hard coding" them.

http://localhost:8001/CorePython2.slides.html?print-pdf

2 of 54 Sunday 16 February 2014 05:30 PM

In [1]: # Modified first program.
a = raw_input("Please enter number 1: ")
b = raw_input("Please enter number 2: ")

c, d = a+b, a-b
q, r = a/b, a*b

print c,d,q,r

Please enter number 1: 5.0

Please enter number 2: 2.5

TypeError Traceback (most recen

t call last)

<ipython-input-1-82ce9ef7d8e0> in <module>()

 3 b = raw_input("Please enter number 2: ")

 4

----> 5 c, d = a+b, a-b

 6 q, r = a/b, a*b

 7

TypeError: unsupported operand type(s) for -: 'str' and 'str'

http://localhost:8001/CorePython2.slides.html?print-pdf

3 of 54 Sunday 16 February 2014 05:30 PM

http://localhost:8001/CorePython2.slides.html?print-pdf

4 of 54 Sunday 16 February 2014 05:30 PM

What happened?What happened?

Anything input through the keyboard using raw_input() is ... a "string".
Strings support addition (concatenation) but nothing else.

So what should we do?So what should we do?

"3.0" is a string. 3.0 is a float!
To convert "3.0" into a string, we use a simple function float("3.0")

So, let's rewrite our program!

http://localhost:8001/CorePython2.slides.html?print-pdf

5 of 54 Sunday 16 February 2014 05:30 PM

In [2]:

Yuck! That ugly output! Wish I could control the decimal places...

a = float(raw_input("Enter Number 1: "))
b = float(raw_input("Enter Number 2: "))

c,d = a+b, a-b
q,r = a*b, a/b

print "Addition = %f, Difference = %f " % (c,d)
print "Division = %f, Quotient = %f" % (q,r)

Enter Number 1: 5.0

Enter Number 2: 2.5

Addition = 7.500000, Difference = 2.500000

Division = 12.500000, Quotient = 2.000000

http://localhost:8001/CorePython2.slides.html?print-pdf

6 of 54 Sunday 16 February 2014 05:30 PM

In [3]:

Ah! Now, that's much better.

a = float(raw_input("Enter Number 1: "))
b = float(raw_input("Enter Number 2: "))

c,d = a+b, a-b
q,r = a*b, a/b

print "Addition = %.2f, Difference = %.2f " % (c,d)
print "Division = %.2f, Quotient = %.2f" % (q,r)

Enter Number 1: 5.0

Enter Number 2: 2.5

Addition = 7.50, Difference = 2.50

Division = 12.50, Quotient = 2.00

http://localhost:8001/CorePython2.slides.html?print-pdf

7 of 54 Sunday 16 February 2014 05:30 PM

String FormattingString Formatting
We have seen a powerful of constructing strings in the previous example.

In [4]:

C / FORTRAN users will immediately understand this method of string construction.

Python supports this and its own way of stringPython supports this and its own way of string
formatting.formatting.

print "Addition = %.2f, Difference = %.2f " % (c,d)

Addition = 7.50, Difference = 2.50

http://localhost:8001/CorePython2.slides.html?print-pdf

8 of 54 Sunday 16 February 2014 05:30 PM

In [5]:

In [6]:

In [7]:

In [8]:

gal_name = "NGC 7709"; int_bmagnitude = 13.6

statement1 = "The galaxy %s has an integrated \
B-band magnitude of %.2f" % (gal_name, int_bmagnitude)

statement2 = "The galaxy {0:s} has an integrated \
B-band magnitude of {1:.2f}".format(gal_name, int_bmagnitude)

statement3 = "The galaxy {name:s} has an integrated \
B-band magnitude of {mag:.2f}".format(name=gal_name, mag=int_bma
gnitude)

http://localhost:8001/CorePython2.slides.html?print-pdf

9 of 54 Sunday 16 February 2014 05:30 PM

All the above statements are equivalent!All the above statements are equivalent!

In [15]:

You can choose whichever method you like!

As a former C/C++ user, I'd prefer the first method.

But ... second and third methods are more "Pythonic".

print statement1, "\n", statement2, "\n", statement3, "\n"

The galaxy NGC 7709 has an integrated B-band magnitude of 13.60

The galaxy NGC 7709 has an integrated B-band magnitude of 13.60

The galaxy NGC 7709 has an integrated B-band magnitude of 13.60

http://localhost:8001/CorePython2.slides.html?print-pdf

10 of 54 Sunday 16 February 2014 05:30 PM

ConditionalsConditionals

In [16]:

Let us write something bigger...

num = int(raw_input("Enter number: "))
if num %2 == 0:
 print "%d is even!" % num
else:
 print "%d is odd!" % num

Enter number: 3

3 is odd!

http://localhost:8001/CorePython2.slides.html?print-pdf

11 of 54 Sunday 16 February 2014 05:30 PM

In [2]:

What do you notice apart from the syntax in the aboveWhat do you notice apart from the syntax in the above
example?example?

model_choice = int(raw_input("Enter choice [1 or 2]: "))
spectra = 3 # In realistic case, this will be some complicated o
bject.

if model_choice == 1:
 model1(spectra)
 print "Model 1 fitted."
elif model_choice == 2:
 model2(spectra)
 print "Model 2 fitted."
else:
 print "Invalid model entered."

Enter choice [1 or 2]: 1

Model 1 fitted.

http://localhost:8001/CorePython2.slides.html?print-pdf

12 of 54 Sunday 16 February 2014 05:30 PM

Indentation - A Vital Part of the Pythonic WayIndentation - A Vital Part of the Pythonic Way
Be it the if-block illustrated above or the loops or the functions (to come soon),
indentation is at the heart of the Python's way of doing things!

Function definitions, loops, if-blocks - nothing has your typical boundaries like { } as in
C/C++/Java.

The "level of the indentation" defines the scope of a "block".

http://localhost:8001/CorePython2.slides.html?print-pdf

13 of 54 Sunday 16 February 2014 05:30 PM

In support of indentationIn support of indentation
Look at the following C-like code.

Which "if" does the "else" belong to?

In C like languages, the braces {}s do the marking, the indentation is purely optional. In
Python, indentation levels determine scopes. In Python the "the else" belongs to "if
(x>0)".

Python forces you to write clean code! (Obfuscation lovers, go to hell!)

if (x>0)
 if (y>0)
 print "Woohoo!"
else
 print "Booboo!"

http://localhost:8001/CorePython2.slides.html?print-pdf

14 of 54 Sunday 16 February 2014 05:30 PM

Wrapping up if-elif-elseWrapping up if-elif-else
The general syntax:

if <condition>:
 do this
 and this
elif <condition>:
 this
 and this
...
else:
 do this
 and this

http://localhost:8001/CorePython2.slides.html?print-pdf

15 of 54 Sunday 16 February 2014 05:30 PM

Conditions are anything that return True or False.Conditions are anything that return True or False.

== (equal to)
!=

>=
<
<=

You can combine conditionals using "logical operators"

and
or
not

http://localhost:8001/CorePython2.slides.html?print-pdf

16 of 54 Sunday 16 February 2014 05:30 PM

The Boolean Data TypeThe Boolean Data Type

In [3]:

In [4]:

a = True
b = False

if a:
 print "This comes on screen."

if b:
 print "This won't come on screen."

This comes on screen.

type(a) # To check type of object.

Out[4]: bool

http://localhost:8001/CorePython2.slides.html?print-pdf

17 of 54 Sunday 16 February 2014 05:30 PM

Almost Everything has a Boolean EquivalentAlmost Everything has a Boolean Equivalent

In [5]:

In [8]:

a = 1
b = 0

if a:
 print "Hello!"
if b:
 print "Oh No!"

Hello!

s1 = ""; s2 = "Hello"

if s1:
 print "Won't be printed."
if s2:
 print "Will be printed."

Will be printed.

http://localhost:8001/CorePython2.slides.html?print-pdf

18 of 54 Sunday 16 February 2014 05:30 PM

Conditional ExpressionConditional Expression
Consider...

In [9]:

In [10]:

In [11]:

if 5 > 6:
 x = 2
else:
 x = 3

y = 2 if 5 > 6 else 3

print x,y

3 3

http://localhost:8001/CorePython2.slides.html?print-pdf

19 of 54 Sunday 16 February 2014 05:30 PM

A Second Tour of the Data TypesA Second Tour of the Data Types
The two other data types we need to know:

Lists
Dictionaries

Data Types we will not cover (formally):

Tuples (immutable lists!)
Sets (key-less dictionaries!)
Complex Numbers
Fractions
Decimals
Ordered Tuples ...

http://localhost:8001/CorePython2.slides.html?print-pdf

20 of 54 Sunday 16 February 2014 05:30 PM

ListsLists

In [12]:

In [13]:

In [14]:

In [15]:

a = [1,2,3,4] # simple ordered collection

b = ["Hello", 45, 7.64, True] # can be heterogeneous

a[0], a[-1], a[1:3] # All "sequence" operations supported.

Out[14]: (1, 4, [2, 3])

b[0][1] # 2nd member of the 1st member

Out[15]: 'e'

http://localhost:8001/CorePython2.slides.html?print-pdf

21 of 54 Sunday 16 February 2014 05:30 PM

In [16]:

In [17]:

In [18]:

In [19]:

a = [[1,2,3] , [4,5,6] , [7,8,9]] # list of lists allowed.

a[2][1] # Accessing elements in nested structures.

Out[17]: 8

[1,3,4] + [5,6,7] # Support concatenation

Out[18]: [1, 3, 4, 5, 6, 7]

[1,6,8] * 3 # Repetition (like strings)

Out[19]: [1, 6, 8, 1, 6, 8, 1, 6, 8]

http://localhost:8001/CorePython2.slides.html?print-pdf

22 of 54 Sunday 16 February 2014 05:30 PM

Lists are Mutable! (Strings are not!)Lists are Mutable! (Strings are not!)

In [20]:

In [21]:

In [22]:

In [23]:

a = [1,4,5,7]

print a

[1, 4, 5, 7]

a[2] = 777

print a

[1, 4, 777, 7]

http://localhost:8001/CorePython2.slides.html?print-pdf

23 of 54 Sunday 16 February 2014 05:30 PM

List MethodsList Methods

In [27]:

In [28]:

In [29]:

a = [1,3,5]
print a

[1, 3, 5]

a.append(7) # adds an element to the end
print a # the list has changed (unlike string methods!)

[1, 3, 5, 7]

a.extend([9,11,13]) # concatenates a list at the end
print a

[1, 3, 5, 7, 9, 11, 13]

http://localhost:8001/CorePython2.slides.html?print-pdf

24 of 54 Sunday 16 February 2014 05:30 PM

In [30]:

In [31]:

In [32]:

print a

[1, 3, 5, 7, 9, 11, 13]

a.pop() # Removes one element at the end.
print a

[1, 3, 5, 7, 9, 11]

a.pop(2) # Removes 3rd element.
print a

[1, 3, 7, 9, 11]

http://localhost:8001/CorePython2.slides.html?print-pdf

25 of 54 Sunday 16 February 2014 05:30 PM

Don't Forget!!!Don't Forget!!!

In [33]: print dir(a) # list of methods for a list "a"

['__add__', '__class__', '__contains__', '__delattr__', '__deli

tem__', '__delslice__', '__doc__', '__eq__', '__format__', '__g

e__', '__getattribute__', '__getitem__', '__getslice__', '__gt_

_', '__hash__', '__iadd__', '__imul__', '__init__', '__iter__',

 '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__',

 '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__

rmul__', '__setattr__', '__setitem__', '__setslice__', '__sizeo

f__', '__str__', '__subclasshook__', 'append', 'count', 'extend

', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

http://localhost:8001/CorePython2.slides.html?print-pdf

26 of 54 Sunday 16 February 2014 05:30 PM

In [34]: help(a.sort)

Help on built-in function sort:

sort(...)

 L.sort(cmp=None, key=None, reverse=False) -- stable sort *I

N PLACE*;

 cmp(x, y) -> -1, 0, 1

http://localhost:8001/CorePython2.slides.html?print-pdf

27 of 54 Sunday 16 February 2014 05:30 PM

Implications of MutabilityImplications of Mutability

In [35]:

l and m point to the same object. When the object mutates, whether you refer to it using
l or m, you get the same mutated object.

l = [1,2,3,4]
m = l

l.append(5)
print l
print m

[1, 2, 3, 4, 5]

[1, 2, 3, 4, 5]

http://localhost:8001/CorePython2.slides.html?print-pdf

28 of 54 Sunday 16 February 2014 05:30 PM

How do I make a copy then?How do I make a copy then?

In [36]:

Python has a module called "copy" available for making copies. Will be covered later.

l = [1,2,3,4]
m = l[:]

l.append(5)
print l
print m

[1, 2, 3, 4, 5]

[1, 2, 3, 4]

http://localhost:8001/CorePython2.slides.html?print-pdf

29 of 54 Sunday 16 February 2014 05:30 PM

DictionariesDictionaries

Imagine a list as a collection of objects obj0, obj1, obj2 ...
First object has a location 0, second 1 ...
Now, imagine renaming location 0 as "something", location 1 as
"somethingelse" ...
Earlier, you accessed objects at numbered locations a[0].
Now, you access objects by specifying location names a["something"]

Let's see this at work.

http://localhost:8001/CorePython2.slides.html?print-pdf

30 of 54 Sunday 16 February 2014 05:30 PM

In [37]:

"a", "b" are called keys and 3,5 are called values. So formally, a dictionary is a collection of
key-value pairs.

In [38]:

d1 = { "a" : 3, "b" : 5}
print d1["a"]
print d1["b"]

3

5

d1["c"] = 7 # Since "c" does not exist, a new key-value pair is
made.
d1["a"] = 1 # SInce "a" exists already, value is modified.
print d1 # You will notice the order is not the same.

{'a': 1, 'c': 7, 'b': 5}

http://localhost:8001/CorePython2.slides.html?print-pdf

31 of 54 Sunday 16 February 2014 05:30 PM

Dictionary MethodsDictionary Methods

In [39]:

In [40]:

In [41]:

keys = d1.keys() # Returns a list of all keys which is stored in
 "keys".
print keys

['a', 'c', 'b']

values = d1.values() # Returns a list of values.
print values

[1, 7, 5]

d1.items() # List of Tuples of key-value pairs.

Out[41]: [('a', 1), ('c', 7), ('b', 5)]

http://localhost:8001/CorePython2.slides.html?print-pdf

32 of 54 Sunday 16 February 2014 05:30 PM

Defining Dictionaries - ways to do thisDefining Dictionaries - ways to do this

In [42]:

In [43]:

In [44]:

In [45]:

d1 = {"a":3, "b":5, "c":7} # we've seen this.

keys = ["a", "b", "c"]
values = [3,5,7]
d2 = dict(zip(keys,values)) # creates dictionary similar to d2

d3 = dict(a=3, b=5, c=7) # again, same as d1,d2

d4 = dict([("a",3), ("b",5), ("c",7)]) # same as d1,d2,d3

http://localhost:8001/CorePython2.slides.html?print-pdf

33 of 54 Sunday 16 February 2014 05:30 PM

Loop Loop LoopLoop Loop Loop

In [46]: x = 0
while x<5:
 print x, # NOTICE the comma at the end. Suppresses new line.
 x += 1

0 1 2 3 4

http://localhost:8001/CorePython2.slides.html?print-pdf

34 of 54 Sunday 16 February 2014 05:30 PM

In [49]: x = 1
while True:
 print "x = %d" % x
 choice = raw_input("Do you want to continue? ")
 if choice != "y":
 break # This statement breaks the loop.
 else:
 x += 1

x = 1

Do you want to continue? y

x = 2

Do you want to continue? y

x = 3

Do you want to continue? q

http://localhost:8001/CorePython2.slides.html?print-pdf

35 of 54 Sunday 16 February 2014 05:30 PM

The "for" loop - Pay Attention!The "for" loop - Pay Attention!

In [51]: x = [5,6,7,8,9,0] # a simple list
for i in x:
 print i

5

6

7

8

9

0

http://localhost:8001/CorePython2.slides.html?print-pdf

36 of 54 Sunday 16 February 2014 05:30 PM

In " for i in x", x can be anything that is a collection of things.

In [52]: s = "Hello!"

for c in s:
 print c

H

e

l

l

o

!

http://localhost:8001/CorePython2.slides.html?print-pdf

37 of 54 Sunday 16 February 2014 05:30 PM

No No No! I my good old for-loop back which generates numbers x to y in steps of z!!!

In [53]:

In [54]:

In [55]:

OKAY!!!

for i in range(2,15,3):
 print i

2

5

8

11

14

range(10)

Out[54]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

range(2,10)

Out[55]: [2, 3, 4, 5, 6, 7, 8, 9]

http://localhost:8001/CorePython2.slides.html?print-pdf

38 of 54 Sunday 16 February 2014 05:30 PM

Let us see some wicked for-loops.

In [56]: a = [1,2,3,4,5]
b = "Hello"
c = zip(a,b)
print c

for i,j in c:
 print i, j

[(1, 'H'), (2, 'e'), (3, 'l'), (4, 'l'), (5, 'o')]

1 H

2 e

3 l

4 l

5 o

http://localhost:8001/CorePython2.slides.html?print-pdf

39 of 54 Sunday 16 February 2014 05:30 PM

In [57]: a = "Hello!"

for i, c in enumerate(a):
 print "Character no. %d is %s" % (i+1, c)

Character no. 1 is H

Character no. 2 is e

Character no. 3 is l

Character no. 4 is l

Character no. 5 is o

Character no. 6 is !

http://localhost:8001/CorePython2.slides.html?print-pdf

40 of 54 Sunday 16 February 2014 05:30 PM

You can break and continue for-loops too!
http://localhost:8001/CorePython2.slides.html?print-pdf

41 of 54 Sunday 16 February 2014 05:30 PM

In [60]: for i in range(10000):
 if i%2 == 0: # Even
 print "Even"
 continue
 print "Odd!"

 if i == 7: # What if I had said "i==8 or i==10" ??????
 break

Even

Odd!

Even

Odd!

Even

Odd!

Even

Odd!

http://localhost:8001/CorePython2.slides.html?print-pdf

42 of 54 Sunday 16 February 2014 05:30 PM

http://localhost:8001/CorePython2.slides.html?print-pdf

43 of 54 Sunday 16 February 2014 05:30 PM

Traversing Dictionaries using for-loopsTraversing Dictionaries using for-loops

In [61]: d = dict(a = 1, b = 2, c = 3, d = 4)

for key,value in d.items():
 print key, "-->", value

a --> 1

c --> 3

b --> 2

d --> 4

http://localhost:8001/CorePython2.slides.html?print-pdf

44 of 54 Sunday 16 February 2014 05:30 PM

In [63]: for key in d.keys():
 print key, "-->", d[key]

a --> 1

c --> 3

b --> 2

d --> 4

http://localhost:8001/CorePython2.slides.html?print-pdf

45 of 54 Sunday 16 February 2014 05:30 PM

Function BasicsFunction Basics

In [64]:

In [65]:

In [66]:

def myfun():
 print "Hello World!"

myfun()

Hello World!

x = myfun()
print x

Hello World!

None

http://localhost:8001/CorePython2.slides.html?print-pdf

46 of 54 Sunday 16 February 2014 05:30 PM

Functions with ArgumentsFunctions with Arguments

In [67]:

In [68]:

In [69]:

def myfun(string):
 print string

myfun() # ERROR

TypeError Traceback (most recen

t call last)

<ipython-input-68-f3ab186f5d61> in <module>()

----> 1 myfun() # ERROR

TypeError: myfun() takes exactly 1 argument (0 given)

myfun("Happiness!")

Happiness!

http://localhost:8001/CorePython2.slides.html?print-pdf

47 of 54 Sunday 16 February 2014 05:30 PM

Function with a Return ValueFunction with a Return Value

In [70]:

In [71]:

Function with Optional ArgumentsFunction with Optional Arguments

In [72]:

In [73]:

def myfun(a,b):
 return a+b

x = myfun(2,3)
print x

5

def myfun(string = "Hello World!"):
 print string

myfun() # No argument supplied.

Hello World!

http://localhost:8001/CorePython2.slides.html?print-pdf

48 of 54 Sunday 16 February 2014 05:30 PM

In [74]:

In [76]:

myfun("Not in a Mood!")

Not in a Mood!

x = "I am a string!"
myfun(x)

I am a string!

http://localhost:8001/CorePython2.slides.html?print-pdf

49 of 54 Sunday 16 February 2014 05:30 PM

Functions are Objects!Functions are Objects!

In [77]:

In [78]:

import math
print math.sqrt(5)

a = math.sqrt
print a(5)

2.2360679775

2.2360679775

def do(f,x):
 f(x)
do(myfun, "Hello!")

Hello!

http://localhost:8001/CorePython2.slides.html?print-pdf

50 of 54 Sunday 16 February 2014 05:30 PM

Handling FilesHandling Files
Let us study how to handle files through a simple exercise. The basic approach involves
creating file objects in Python and use various methods associated with file objects to
handle file I/O.

open() function is used to create file object.
fileObject.read() - reads entire file as one big string.
fileObject.write() - to write a string in a file.
fileObject.readlines() - to read each line as an element of a list.
fileObject.writelines() - to write a set of lines, each one being a string.
fileObject.close() - to close a file (buffer flush)

http://localhost:8001/CorePython2.slides.html?print-pdf

51 of 54 Sunday 16 February 2014 05:30 PM

Program to "Double Space" a FileProgram to "Double Space" a File

In []: """
Program to create a double spaced file.
Input: File Name
Output: Modified File with .sp extension
"""

import sys # we need this to parse command line arguments.
import os # we need this to check for file's existence

http://localhost:8001/CorePython2.slides.html?print-pdf

52 of 54 Sunday 16 February 2014 05:30 PM

In []: # Check number of arguments.
if len(sys.argv) == 2:

infile_name = sys.argv[1]
else:

print "Oops! Incorrect Number of Arguments."
sys.exit(2)

Check if file exists.
if not os.path.isfile(infile_name):

print "File doesn't exist."
sys.exit(3)

http://localhost:8001/CorePython2.slides.html?print-pdf

53 of 54 Sunday 16 February 2014 05:30 PM

In []: # Open the input file.
infile = open(infile_name, "r")

Open an output file.
outfile = open(infile_name + ".sp", "w")

Loop over each line, add new line to each line.
for line in infile.readlines():

line = line+"\n"
outfile.write(line)

outfile.close()
infile.close()

http://localhost:8001/CorePython2.slides.html?print-pdf

54 of 54 Sunday 16 February 2014 05:30 PM

