
More Python - Functions and ModulesMore Python - Functions and Modules
by

Kaustubh VaghmareKaustubh Vaghmare
(IUCAA, Pune)

E-mail: kaustubh[at]iucaa[dot]ernet[dot]in

http://localhost:8001/AdvPython.slides.html?print-pdf

1 of 28 Friday 25 July 2014 04:12 PM

FunctionsFunctions
Blocks of code that perform a specific task.

In Python, a function is defined using the "def" keyword.

We have already seen examples of functions.

float(), dict(), list(), len() etc.
math - sqrt(), floor(), ceil(), radians(), sin()
open(), type() etc.

http://localhost:8001/AdvPython.slides.html?print-pdf

2 of 28 Friday 25 July 2014 04:12 PM

A Simple FunctionA Simple Function
In [13]:

Pay attention to how the statements indented one level up are part of the function while
the statement indented at the same level is not a part of the function.

In [14]:

def myfun():
 print "Hello World!"
 print "Nice to see you."

print "Outside the function."

Outside the function.

myfun() # This is how you call our function.

Hello World!

Nice to see you.

http://localhost:8001/AdvPython.slides.html?print-pdf

3 of 28 Friday 25 July 2014 04:12 PM

Function With One ArgumentFunction With One Argument
In [15]:

In [16]:

As per function definition, one argument / input is needed. An attempt to call the
function with none gives an error. EVEN supplying two arguments is wrong.

def myfun(a):
 print "Inside MyFun!"
 print a

myfun() # WILL GIVE ERROR.

TypeError Traceback (most recen

t call last)

<ipython-input-16-94e8ef4e305f> in <module>()

----> 1 myfun() # WILL GIVE ERROR.

TypeError: myfun() takes exactly 1 argument (0 given)

http://localhost:8001/AdvPython.slides.html?print-pdf

4 of 28 Friday 25 July 2014 04:12 PM

In [17]:

REMEMBERREMEMBER
Python is a dynamically typed language. The true strength of this lies in the fact that you
can also call the above function with a float or integer or list input!

In [18]:

In [19]:

myfun("An Input")

Inside MyFun!

An Input

myfun(5)

Inside MyFun!

5

myfun([1,2,3])

Inside MyFun!

[1, 2, 3]

http://localhost:8001/AdvPython.slides.html?print-pdf

5 of 28 Friday 25 July 2014 04:12 PM

Functions that "return" something.Functions that "return" something.
http://localhost:8001/AdvPython.slides.html?print-pdf

6 of 28 Friday 25 July 2014 04:12 PM

In [20]:

In [23]:

A function that does not have a return statement returns by default something called
"None".

In [24]:

In [25]:

def add(a,b):
 return a+b

a = add(2,3)
print a

5

b = myfun("Hello")

Inside MyFun!

Hello

print b

None

http://localhost:8001/AdvPython.slides.html?print-pdf

7 of 28 Friday 25 July 2014 04:12 PM

Functions can return more than one value at a time!Functions can return more than one value at a time!
In [26]:

In [27]:

Well, technically - Python is returning only one object but that one object is a tuple - in
the above case - (2,3)

def sumprod(a,b):
 return a+b, a*b

s, p = sumprod(2,3)

http://localhost:8001/AdvPython.slides.html?print-pdf

8 of 28 Friday 25 July 2014 04:12 PM

Optional ArgumentsOptional Arguments
"I want a function to assume some values for some arguments when I don't provide
them!" Let's see how this is achieved.

In [28]:

In [29]:

In [30]:

def myfun(message = "Default Message"):
 print message

myfun("Hello World")

Hello World

myfun()

Default Message

http://localhost:8001/AdvPython.slides.html?print-pdf

9 of 28 Friday 25 July 2014 04:12 PM

Functions with Arbitrary Number of ArgumentsFunctions with Arbitrary Number of Arguments
In [31]:

In [32]:

In [33]:

def sumitall(*values):
 total = 0
 for i in values:
 total += i
 return total

sumitall(2,3,4,5)

Out[32]: 14

sumitall(2,3,4)

Out[33]: 9

http://localhost:8001/AdvPython.slides.html?print-pdf

10 of 28 Friday 25 July 2014 04:12 PM

Mixture of ArgumentsMixture of Arguments
In [34]:

In [35]:

In [36]:

In [39]:

sumitall()

Out[34]: 0

def sumitall2(val1, *values):
 total = val1
 for i in values:
 total += val1
 return total

sumitall2(2)

Out[36]: 2

sumitall2(2,3,4)

Out[39]: 6

http://localhost:8001/AdvPython.slides.html?print-pdf

11 of 28 Friday 25 July 2014 04:12 PM

In [40]:

This way, you can design functions the way you want by imposing both a minimum
number of arguments and have flexibility of an arbitary number of them!

sumitall2() # WILL GIVE AN ERROR.

TypeError Traceback (most recen

t call last)

<ipython-input-40-349bf319af91> in <module>()

----> 1 sumitall2()

TypeError: sumitall2() takes at least 1 argument (0 given)

http://localhost:8001/AdvPython.slides.html?print-pdf

12 of 28 Friday 25 July 2014 04:12 PM

Functions are ObjectsFunctions are Objects
Like lists, dictionaries, ints, floats, strings etc you can pass functions to other functions
since they are just objects.

In [6]:

In [46]:

In [7]:

def myfun(message):
 print message

def do(f, arg):
 f(arg)

do(myfun, "Something")

Something

x = myfun # simple variable assignment
x("Hilo!")

Hilo!

http://localhost:8001/AdvPython.slides.html?print-pdf

13 of 28 Friday 25 July 2014 04:12 PM

Function DocumentationFunction Documentation
Recall using help(math.hypot) to get help on understanding how to use hypot() function.
Can we design a function myfun() and ensure that help(myfun) also gives a nice "help"
output?

In [41]:

In [42]:

def myfun(a,b):
 """
 Input: Two Objects
 Output: Sum of the two input objects.
 """
 return a+b

help(myfun)

Help on function myfun in module __main__:

myfun(a, b)

 Input: Two Objects

 Output: Sum of the two input objects.

http://localhost:8001/AdvPython.slides.html?print-pdf

14 of 28 Friday 25 July 2014 04:12 PM

When designing functions of your own, it is always good to document what the function
does so that you and others can use it in the future with ease.

http://localhost:8001/AdvPython.slides.html?print-pdf

15 of 28 Friday 25 July 2014 04:12 PM

ModulesModules
Modules can be considered as "namespaces" which have a collection of objects which
which you can use when needed. For example, math modules has 42 objects including
two numbers "e" and "pi" and 40 functions.

Every program you execute directly is treated as a module with a special name __main__.

So, all the variables you define, the functions you create are said to live in the namespace
of __main__.

When you say the following, you are making the namespace of math available to you.

To then access something inside math, you say

import math

math.object

http://localhost:8001/AdvPython.slides.html?print-pdf

16 of 28 Friday 25 July 2014 04:12 PM

So what happens when you "import"So what happens when you "import"

Python interpreter searches for math.py in the current directory or the
installation directory (in that order) and compiles math.py, if not already
compiled.
Next, it creates a handle of the same name i.e. "math" which can be used to
access the objects living inside math.

In [47]: import math
type(math)

Out[47]: module

http://localhost:8001/AdvPython.slides.html?print-pdf

17 of 28 Friday 25 July 2014 04:12 PM

Other way to "import"Other way to "import"
In the above example, you are accessing objects inside math through the module object
that Python created. It is also possible to make these objects become a part of the
current namespace.

In [48]:

WARNING: The above method is extremely dangerous! If your program and the
module have common objects, the above statement with cause a lot of mix-up!

from math import *

from math import *
radians(45) # no math.radians required.

Out[48]: 0.7853981633974483

http://localhost:8001/AdvPython.slides.html?print-pdf

18 of 28 Friday 25 July 2014 04:12 PM

A Middle GroundA Middle Ground
If there is an object you specifically use frequently and would like to make it a part of
your main namespace, then,

In [1]:

NOTE: If you import the same module again in the same program, Python does not
reload. Use reload(ModuleName) for reloading.

from ModuleName import Object

from math import sin
print sin(1.54)

0.999525830605

http://localhost:8001/AdvPython.slides.html?print-pdf

19 of 28 Friday 25 July 2014 04:12 PM

Aliases for a ModuleAliases for a Module
If you have decided to access a module's objects from its own namespace, you can
choose to alias the module with a name.

Another example,

import numpy as np
np.array(...)

import matplotlib.pyplot as plt
plt.plot(x,y)

http://localhost:8001/AdvPython.slides.html?print-pdf

20 of 28 Friday 25 July 2014 04:12 PM

The Python Module EcosystemThe Python Module Ecosystem
There are three types of modules you will encounter in Python.

Built-in Modules (come with any standard installation of Python)
Third Party Modules (need to be installed separately)
Your Own Modules (we'll see how to make them soon)

http://localhost:8001/AdvPython.slides.html?print-pdf

21 of 28 Friday 25 July 2014 04:12 PM

Built-in ModulesBuilt-in Modules

sys - contains tools for system arguments, OS information etc.
os - for handling files, directories, executing external programs
re - for parsing regular expressions
datetime - for date and time conversions etc.
pickle - for object serialization
csv - for reading CSV tables

and many many more ...

http://localhost:8001/AdvPython.slides.html?print-pdf

22 of 28 Friday 25 July 2014 04:12 PM

Third Party ModulesThird Party Modules
These need to be installed separately.

numpy / scipy - numerical plus scientific computing extensions to Python
matplotlib - using Python for plots
mayavi - for animations in 3D
pandas - for tabular data analysis
astropy - Python for Astronomers
scikit-learn - machine learning and classification tools for Python

http://localhost:8001/AdvPython.slides.html?print-pdf

23 of 28 Friday 25 July 2014 04:12 PM

Making your Own ModulesMaking your Own Modules
Very simple. Open a file, say, "MyModule.py"

Write code in the file.

If the file is in the present folder or on the PYTHONPATH, the following will work.

__NOTE 1: __ File name must have extension .py
__NOTE 2: __ When importing extension must be dropped.

import MyModule
MyModule.something ...

http://localhost:8001/AdvPython.slides.html?print-pdf

24 of 28 Friday 25 July 2014 04:12 PM

Example Module - Example.pyExample Module - Example.py

The above code is stored in Example.py. Let's see how to use it.

"""
This is a custom module.
Containing some functions for the purpose of demonstration.
"""
def fun1():
 print "Inside fun1"

def fun2():
 print "Inside fun2"

pi = 3.14
e = 2.7

print "I am a Custom Module"

http://localhost:8001/AdvPython.slides.html?print-pdf

25 of 28 Friday 25 July 2014 04:12 PM

In [1]:

Notice the message printed by Example.py. This is to illustrate that any output generated
by Example.py will appear on the screen.

In [2]:

In [3]:

import Example

I am a Custom Module

print Example.pi

3.14

Example.fun1()

Inside fun1

http://localhost:8001/AdvPython.slides.html?print-pdf

26 of 28 Friday 25 July 2014 04:12 PM

In [4]: help(Example)

Help on module Example:

NAME

 Example

FILE

 /home/kaustubh/Dropbox/IIST2014/Example.py

DESCRIPTION

 This is a custom module.

 Containing some functions for the purpose of demonstration.

FUNCTIONS

 fun1()

 fun2()

DATA

 e = 2.7

 pi = 3.14

http://localhost:8001/AdvPython.slides.html?print-pdf

27 of 28 Friday 25 July 2014 04:12 PM

Notice the description. It is what you enclosed in the "docstring" at the beginning of the
module.

In []:

http://localhost:8001/AdvPython.slides.html?print-pdf

28 of 28 Friday 25 July 2014 04:12 PM

